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ABSTRACT
In this paper, we tackle the problem of restoring unevenly il-
luminated images. Generally, there exist three kinds of expo-
sure conditions in these images: under-, normal-, and over-
exposures. Thus, a three-component generalized Gaussian
mixture model (3GGMM) is used to fit the histogram of the il-
luminance image, and probabilistically characterize the three
exposure states. Based on the 3GGMM, separate optimal tone
mapping functions are designed to enhance under- and over-
exposed regions by maximizing expected contrast of these re-
gions. The output illumination can be obtained by fusing the
restoration results in different exposure states. Experimen-
tal results validate the effectiveness of the proposed image
restoration approach.

Index Terms— Unevenly illuminated image restoration,
generalized Gaussian mixture model, tone mapping

1. INTRODUCTION

One of the most common types of image degradation for ma-
jority of camera users is poor intelligibility of details caused
by the uneven illumination condition. The problem typical-
ly occurs when the illumination condition in the scene varies
dramatically. In the large and growing body of image restora-
tion literature, most works addressed the problems of super-
resolution, denoising, and deblurring, with little attention giv-
en to image restoration for uneven illumination. Ironical-
ly, nowadays even inexpensive main stream consumer-grade
cameras can take high resolution, noise free and sharp pic-
tures, whereas they suffer from poor image quality in uneven
illumination conditions that are often out of users’ control.
In this regard, restoring this kind of images is arguably more
important and pressing than other extensively studied tasks.

An obvious attempt to rectify the uneven illumination
problem is tone mapping or contrast enhancement, which
operates on a single image of a fixed exposure setting. His-
togram equalization (HE) and its variant contrast limited
adaptive histogram equalization (CLAHE) [1] are the repre-
sentatives. However, HE conducts a global adjustment and
hence it cannot adapt to drastically different intensity dis-
tributions of regions under different illumination conditions.
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CLAHE uses artificial blocks instead of natural segments
and generates artifacts. These artifacts can be alleviated by
edge-aware tone mapping methods, such as edge-preserving
decomposition [2], and local Laplacian filtering [3]. They
can amplify high frequency features such as edges, but at the
expense of unnatural overall tone reproduction. Low-light
image enhancement methods [4, 5] can effectively enhance
under-exposed regions in unevenly illuminated images. How-
ever, they may over-enhance over-exposed regions.

In this paper, we aim to restore unevenly illuminated
images by correcting the problem at its root cause: uneven
illumination. In a typical unevenly illuminated image there
are three types of regions: under-exposed, normally exposed,
and over-exposed. We first estimate the illuminance image
of the input image and then fit the histogram of image L
to a three-components generalized Gaussian mixture mod-
el (3GGMM); the three components correspond to under-,
normal-, and over-exposed regions, respectively. For the
under-exposure and over-exposure components of the 3G-
GMM, we perform a modified optimal contrast-tone mapping
(OCTM) on each component to enhance the image in under-
and over-exposed regions. Finally, the input image is restored
by fusing the results of the under-, normal- and over-exposed
regions.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the development of the illumination model for
unevenly illuminated images, via homomorphic filtering and
the 3GGMM fitting of the input histogram. Section 3 details
the design of adaptive tone mapping function for each of the
three components of the 3GGMM, corresponding to under-,
normal- and over-exposures. In particular, we elaborate on
how to impose a lower/upper bound on the average intensi-
ty of the restored under-exposed/over-exposed regions. Also,
we discuss how to prevent possible halo artifacts by fusing the
results of multiple tone mapping functions according to the
proposed 3GGMM. Experimental results and performance e-
valuations on backlit and flash photographs are reported in
Section 4. Section 5 concludes the paper.

2. ILLUMINATION MODELING

In order to estimate and model the illumination conditions in
which the input image I is acquired, we adopt the image for-
mation model I = LR, with L being the 2D illumination
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Fig. 1. (a) The input unevenly illuminated image I; (b) the histogram of the illuminance image L, and the fitting of a three-
components generalized Gaussian mixture model (black curve) with each component represented in different colors (red, green,
blue curves for under-, normal-, and over-exposed regions, respectively); (c) the 3GGMM fitting result encoded by color, with
R, G, and B values of pixel (i, j) being the probabilities that the pixel (i, j) is in states ωU , ωN , and ωO, respectively; (d) result
generated by the proposed method. More test images (e)(g) and their corresponding 3GGMM fitting results (f)(h).

strength image and R the 2D surface reflectance image [6].
Given the illumination image, if the abnormally exposed re-
gions can be identified, one can restore the input image by
algorithmically adjusting the illumination levels in different
regions; this is to compensate for the insufficient illumina-
tion in under-exposed regions and reduce the excess illumi-
nation in over-exposed regions. In our work, we perform the
non-linear homomorphic filtering on I to extract an estimated
illuminance image L, and use 3GGMM to model the illumi-
nation and separate the three different regions.

In the 3GGMM, each component pj , j ∈ {U,N,O}, is
a generalized Gaussian distribution. A generalized Gaussian
distribution is given by [7]

ℵ(x|µ, σ, λ) = A(λ)exp

(
−B(λ)

∣∣∣∣x− µσ
∣∣∣∣λ
)
, (1)

where µ, σ, and λ are the mean, the standard deviation, and
the shape parameter. A(λ) and B(λ) are defined as:

A(λ) =

[
Γ(3/λ)

Γ(1/λ)

] 1
2 λ

2σΓ(1/λ)
, B(λ) =

[
Γ(3/λ)

Γ(1/λ)

]λ
2

. (2)

As the dynamic range of digital images is a finite inter-
val [0, 255], the 3GGMM should be defined on finite support
[0, 255]. For this reason, the bounded generalized Gaussian
mixture model [8] is used to fit the histogram h of the illumi-
nance image L. In 3GGMM, each component is defined as a
bounded generalized Gaussian distribution Ψ(x|µ, σ, λ).

Ψ(x|µ, σ, λ) = mℵ(x|µ, σ, λ)H(x), (3)

where m is a constant normalizing the distribution and

H(x) =

{
1, if x ∈ [0, 255],

0, otherwise.
(4)

In the illuminance image L, pixels are classified into three
different illumination states: under exposure, normal expo-
sure, and over exposure, denoted by ωU , ωN and ωO; each
state corresponds to a component in the 3GGMM. The proba-
bility distribution p(k) of grey level k is a linear combination
of three generalized Gaussian models

p(k) =
∑
j

P (ωj)p(k|ωj), j ∈ {U,N,O}, (5)

where p(k|ωj) ∼ Ψ(µj , σj , λj) is the probability distribution
function of the bounded generalized Gaussian component ωj
specified by the mean µj , the standard deviation σj , and the
shape parameter λj . P (ωj) is the prior probability of ωj . The
parameters of each generalized Gaussian component can be
obtained by an EM-type iterative algorithm [8].

After obtaining the parameters of each generalized Gaus-
sian component, the probability of grey level k being in state
j can be calculated by

φj(k) = P (ωj)p(k|ωj), j ∈ {U,N,O}. (6)

A visualization of the proposed 3GGMM can be found
in Fig. 1. The figure shows that the 3GGMM fits the input
histogram very well; more importantly, in the image domain,
the 3GGMM generates a remarkably good segmentation in
terms of under, normal, and over exposures.
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(a) Input image (b) HE (c) MSR (d) CLAHE

(e) SRIE (f) CHIR (g) LIME (h) Proposed

Fig. 2. Backlit image restoration by different methods.

3. ADAPTIVE TONE MAPPING

After its construction as discussed in the preceding section,
the resulting 3GGMM is used to extract from the real data
histogram h three component histograms hU ,hN ,hO for the
three exposure types, namely,

hj(k) =
φj(k)

p(k)
h(k), j ∈ {U,N,O}. (7)

These classified histograms provide statistics for the design-
s of optimal tone mapping functions for under- and over-
exposed regions.

Next, we develop the modified OCTM algorithm for
restoring under-exposed regions in an unevenly illuminated
image. In the original OCTM algorithm [9], the goal is to
increase the expected contrast maximally under a tone distor-
tion constraint over the entire image. For the task of unevenly
illuminated image restoration, we apply the OCTM algorithm
not on the global histogram h but on the histogram hU and
hO of the under-exposed and over-exposed regions. More-
over, in the linear program framework of OCTM, we add one
more constraint that the average intensity µU /µO of the under-
exposed/over-exposed regions should be increased/decreased
to µ∗

U /µ∗
O such that µ∗

U /µ∗
O is sufficiently close to the average

intensity µN of the normal-exposed regions. The role of this
constraint is to artificially enforce proper strength of the illu-
mination on excessively or inadequately illuminated objects.
As in [9], we present the tone mapping function TU , which
maps grey level k to TU (k), as a discrete step function

TU (k) =

k∑
i=0

si, 0 ≤ k < K, (8)

where the vector s = (s0, s1, · · · , sK−1) uniquely deter-
mines TU and vice versa. Then, the expected contrast

achieved by TU is

G(hU ,TU ) =

K−1∑
k=0

hU (k)sk. (9)

The objective of restoring under-exposed regions is to find
the tone mapping function TU , or equivalently the vector s,
that maximizes the expected contrast gain G(hU ,TU ) while
satisfying a tone distortion bound d and a lower bound on the
output average intensity µ∗

U (s), which can be formulated as
the following constrained optimization problem

arg max
s

K−1∑
k=0

hU (k)sk,

s.t.

K−1∑
k=0

sk < K

sk ≥ 1/d, 0 ≤ k < K

µU + (µN − µU )ξ ≤ µ∗
U (s) ≤ µN , 0 < ξ ≤ 1.

(10)

The last constraint is the lower bound on the average output
intensity, which is an increment of (µN − µU )ξ above the
original mean µU for the under-exposed regions. This can
increase the dynamic range of under-exposed regions without
suffering from the underflow problem. Also, note that µ∗

U (s)
is a linear function in s, because

µ∗
U (s) =

K−1∑
k=0

hU (k)TU (k) =

K−1∑
k=0

hU (k)

k∑
i=0

si =

K−1∑
k=0

sk

K−1∑
i=k

hU (i).

(11)
Therefore, the problem of Eq. (10) is one of linear program
with K variables, and it can be solved fairly efficiently as
K = 256 in most cases.

1120



(a) Input image (b) HE (c) MSR (d) CLAHE

(e) SRIE (f) CHIR (g) LIME (h) Proposed

Fig. 3. Flash photography restoration by different methods.

A symmetric approach can be used to restore over-
exposed regions. The tone mapping function TO in state
ωO can be computed with the constraint µN ≤ µ∗

O(s) ≤
µO − (µO − µN )ξ, 0 < ξ ≤ 1. For normally exposed re-
gions, nothing needs to be done, i.e., TN is the identity tone
mapping function, TN (k) = k, 0 ≤ k < K.

Finally, with tone mapping functions Tj , j ∈ {U,N,O},
the output k∗ for each input grey level k is given by fusing
the OCTM results of the under-, normal- and over-exposed
regions

k∗ =
∑
j

φj(k)Tj(k). (12)

An intuitive way to generate the final result is to replace the o-
riginal Y channel of the input image by the output illuminance
image. However, this measurement generates color degrada-
tion and we use the method suggested in [10] to produce our
final result.

4. EXPERIMENTAL RESULTS

We conducted extensive experiments with the proposed image
restoration method on two kinds of typical images: backlit
and flash photography. State-of-the-art methods HE, CLAHE
[1], the multi-scale retinex algorithm (MSR) [11], the simul-
taneous reflectance and illumination estimation (SRIE) [12],
the low-light image enhancement via illumination map esti-
mation (LIME) [4], the cultural heritage image restoration
(CHIR) [13] are compared to evaluate the effectiveness of
the proposed method. Test images contain various scenes are
found in the Internet. More experiments can be found in our
website .

Fig. 2 and Fig. 3 present results of backlit image/flash
photography restoration, respectively. As can be observed, in

http://www.icst.pku.edu.cn/struct/Projects/UnevenIllumination.html

backlit image restoration, all methods except ours and LIME
fail to sufficiently enhance the backlit surfaces, leading to less
legibility of the object illuminated from behind than the pro-
posed method. Since LIME is designed specifically for low-
light images, it can effectively enhance the under-exposed re-
gions. However, other regions, especially over-exposed re-
gions, are over-enhanced by LIME.

As for flash photograph restoration, all the methods ex-
cept HE are able to compensate for insufficient lighting on
background regions to some extent. However, not all of
them are effective on repairing over-exposed regions. In fact,
instead of decreasing the excessive illumination strength in
over-exposed regions, SRIE, CHIR, and LIME move in the
opposite direction by increasing the intensity levels in these
regions. MSR and CLAHE generate unnatural appearances of
the restored image, of which the proposed method is immune.

5. CONCLUSION

An unevenly illuminated image restoration method of illu-
mination modeling and adaptive tone mapping is proposed.
An illuminance image is extracted by homomorphic filter-
ing and a 3GGMM is applied to fit the histogram of the il-
luminance image. The resulting 3GGMM provides statistics
for the designs of optimal tone mapping functions for under-
and over-exposed regions. By imposing a lower/upper bound
on the output illumination of under-exposed/over-exposed re-
gions in the OCTM framework, the corresponding tone map-
ping function increases/decreases the illumination strength on
the under-exposed/over-exposed surfaces to compensate for
abnormally weak/strong illuminations at the image acquisi-
tion stage. Experiments and comparison studies indicate that
the proposed image restoration method performs satisfactori-
ly and competitively.
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